

xtractis®

Augmented Fuzzy Cognitivist AI Robots

for Robust Predictive Knowledge Discovery

Is it still possible to challenge them?

WIEF Forum

May 15, 2017 v1.1

Prof. Zyed ZALILA

President-CEO

xtractis® application

most complex issue: Predictive Medicine

Medicine of 21st century

the **Right Diagnosis**

the **Right Drug** in the **Right Dose** to the **Right Patient**

Epigenetics, Oncogenetics

Cancer: 2nd / 3rd fatal disease worldwide

Hugely complex process

≈25K genes (often weak expression intensities)

≈1K metabolic & environmental variables (food, stress, location, happiness, work, well-being,...)

 ∞ interactions (genes \leftrightarrow genes, genes \leftrightarrow environment,...)

Unattainable for a human brain

Limitation of human comprehension (1-3 to 7-9 variables simultaneously)

xtractis® Robots

an Exobrain

Robust Predictive Analytics at everyone's fingertips

New Scientific Approach: automatic design of most efficient learning strategies for automatic induction of decision rules

→ Find out w/o *a priori*, w/o decomposition, w/o a high-level in math

Co-operate with your Exobrain

Make explicit the tacit implicit knowledge

Complex ≠ Complicated ([Descartes 1637] was wrong!)

Complexity cannot be reduced to few dimensions

Hire your AI Robots!

No best Human experts could beat best Al Robots

Al Robot can reason 24/7/365 and solve very complex problems

faster and better than a Human

no tiredness, no holidays, no strike, at a low hourly cost

AI Robots

what ethical/unethical social impacts?

on **Employment**

Less specialist jobs: drivers, doctors, actuaries, traders...

Always manual expert jobs: building workers, surgeons...

More Al scientists jobs (Masters, PhD) → to invent new generation of Robots

on Sciences (Virtual Scientist)

New discoveries → next Nobel Prize, an Al Robot for sure!

PhD (experimental sciences) in few months instead of 3-4 years

on Finance/Insurance (Virtual Banker/Insurer)

Bank advisor available 24/7/365 → mandatory for the digital natives!

Credit/Insurance approval in few seconds, at the lowest price (digital service)

on Transport (Virtual Driver)

More safety and comfort **→** "Rolling Lounge"

Fewer deaths and injuries **BUT** potentially: vehicle hacking (terrorist attacks)

Al Rob what ethic 2/2 on Ma Nev

what ethical/unethical social impacts?

on Marketing/Industry (Virtual Marketer/Engineer)

New optimal products, fitting customer preferences

on Health (Virtual Doctor)

Early diagnosis of pathologies (cancer, diabetes, Alzheimer...)

BUT potentially: refusal of insurance/credit/hiring... and eugenics risk!!

Predictive Personalized Medicine (drug discovery)

BUT potentially: design of chemical weapons

on Defense (Virtual Soldier)

Armed drones to save soldiers' life

BUT potentially: killing authorization without remorse (≈ video game)

on Justice/Security/Cybersecurity (Virtual Judge/Policeman)

Guarantee of an impartial decision

Early detection of fraudulency and malicious behaviors

BUT potentially: hacking of the defender's strategy (reverse engineering)

xtractis *

AI Robots

how to reduce the concerns?

Teaching Ethics

To Al students/specialists (≈ Hippocratic/judicial oath ≈ Do no harm!)

Certifying AI Robots

To ensure their efficiency and ethics/honesty

- → ID cards and **diplomas** for AI Robots given by Human Regulator (DeepMind AlphaGo won the "Divine" 9th Dan in Go Game 03/2016)
- → Universities for Al Robots? Do they still need Humans to learn? (xtractis® Robot builds autonomously its efficient learning strategies for each new predictive problem it has to solve)

Trust and use AI Robots with the most renowned diplomas

Paradox: to certify complex strategies, Human must rely on an Al Robot Regulator **BUT** who will certify the Al Regulator?

Legal Recognition of AI Robots

Rights & Duties, Tax on the value created by Al Robots

Paradox: **IP of discoveries** made by an Al Robot: granted to the Robot, to the User of the Robot or to the inventor of the Robot?

xtractis®

Augmented Fuzzy Cognitivist Al Robots

for Robust Predictive Knowledge Discovery

Is it still possible to challenge them?

www.xtractis.ai xtractis@intellitech.fr

Warning

The entirety of this document is protected by copyright. Reproduction rights are reserved. Quotations from any part of the document must necessarily include the following reference:

Zalila, Z. & al (2012-2017) xtractis® Augmented Fuzzy Cognitivist Al Robots for Robust Predictive Knowledge Discovery. Is it still possible to challenge them?, intellitech [intelligent technologies], May 2017, Compiegne, France, 22p.

intellitech

1705

Prostate Cancer Diagnosis

102 cases

12,600 gene expression levels

Variable to predict: 52 (51%) Tumor (1) / 50 (49%) Normal (0) diagnosis

Independent testing set from a different experiment: 25 tumor and 9 normal samples

Database source: D. Singh & al., Department of Adult Oncology, Brigham and Women's Hospital, Harvard Medical School,

[http://www-genome.wi.mit.edu/mpr/prostate]

type 5 Combined model (CB5) – 500 fuzzy models

70 variables (2 to 11 variables per model)

1,000 rules (2 rules per model)

(majority voting)

Decision	Classification	Matthews	Min. Sensitivity	Unavailable
	error	Correlation	Specificity	
Training (100s x750g x 70%)	0.00%	1.000	100.00%	0 (0.00%)
Validation (100s x750g x 15%)	1.96%	0.961	98.00%	0 (0.00%)
Testing (100s x750g x 15%)	3.92 %	0.922	96.00%	0 (0.00%)
Ext. Validation	2.94%	0.930	96.00%	0 (0.00%)

Performances

		CB5 (majority voting)	Actual class	
		Decision	0	1
eq	0	50 (100.00%)	0 (0.00%)	
redicted	class	1	0 (0.00%)	52 (100.00%)
Pre	J	Unavailable	0 (0.00%)	0 (0.00%)

Training Confusion matrix

	CB5 (majority voting)	Actual cla	SS
	Decision	0	1
pa:	0	49 (98.00%)	1 (1.92%
Predicted class	1	1 (2.00%)	51 (98.08 %
Pre	Unavailable	0 (0.00%)	0 (0.00%

(majority voting)	Actual clas	SS		(majority voting)	Actual clas	SS
Decision	0	1		Decision	0	1
0	49 (98.00 %)	1 (1.92%)		0	9 (100.00%)	1 (4.00%)
1	1 (2.00%)	51 (98.08 %)	edict class	1	0 (0.00%)	24 (96.00%)
Unavailable	0 (0.00%)	0 (0.00%)	Pre	Unavailable	0 (0.00%)	0 (0.00%)

Validation Confusion matrix

External Testing Confusion matrix

CR5

Fuzzy model vs. KSVM

classification – Prostate Cancer 2/2

KSVM model performance

Decision	Classification	Matthews	Minimum Sensitivity
	error	Correlation	Specificity
Accuracy	0.00%	1.000	100.00%
1,000 x MC 15%	8.23%	0.836	89.67%
External Testing	26.47%	0.566	64.00%

Comparison

Decision 0 1
0 9 (100.00%) 9 (36.00%)
1 0 (0.00%) 16 (64.00%)

error = **26.47%**

Actual class

→ xtractis® beats KSVM by 800%

(based on increase of External Testing Error)

Results from R 3.2.0

packages: mlr 1.1.18, imputeR 1.0.0, kernlab Tuning and Robustness Assessment modules by **intelli**tech

Results from xtractis® Generate 9.2.19175

Training

External Testing

	CB5 (majority voting)	Actual class	i .
Predicted class	Decision	0	1
	0	50 (100.00%)	0 (0.00%)
	1	0 (0.00%)	52 (100.00%)
	Unavailable	0 (0.00%)	0 (0.00%)
			/

xtractis®

error = 0.00%

error = 0.00%

	(majority voting)	Actual class	•
	Decision	0	1
Predicted class	0	9 (100.00%)	1 (4.00%)
	1	0 (0.00%)	24 (96.00%)
	Unavailable	0 (0.00%)	0 (0.00%)

error = **2.94%**

9/6

CB5

xtractis® Robot

a smart knowledge discoverer

Robust Predictive Modeling (KDD, DDM)

Automatic discovery of hidden laws ruling the Real World from big multidimensional, heterogeneous, structured datasets

Proprietary Al algorithms: Fuzzy Theory + Machine Learning

Holistic approach handling weak signals & non-linearity

Advantages

Interpretability ("If...Then" decision rules) → human validation, certification

(Random Forest, CART Decision Tree, Boosted Trees, SVM, Neural Networks/Deep Learning, Polyn. Regression, Logistic Regression, PLS

Fully **automated** → neither coding, nor framework

Clients & Awards

Groupe Mars / Mars Petcare / Mars Food, Groupe Bel, L'Oréal, Essilor International, Georgia-Pacific, SCA, Technip / Flexi France, Groupe Engie / CPCU, Technip / Cybernetix, Groupe BPCE / Crédit Foncier de France, Crédit Logement, Groupe Pierre Fabre, Groupe Decathlon, Renault-Nissan, PSA Groupe, Groupe Thales / Thales Alenia Space, Groupe Arkema / Bostik, Groupe Areva, CNES, ESA, Union Européenne . . .

Deloitte Technology Fast 500 – EMEA 2011 & 2012 Winner

xtractis®

xtractis

4 software Robots for an "in-house" complete solution

Fuzzy Mathematics

suitable for real world data

Fuzzy set

Crisp set: **Young** traveler (for airlines)

Fuzzy set: Young traveler

(for Customs & Border Police)

$$X = [0,130] \ years; \ \forall x \in X, \qquad \mu_{Young}(x) = \begin{cases} 1, & if \ x \in [0,20] \\ \frac{40-x}{20}, & if \ x \in [20,40] \\ 0, & otherwise \end{cases}$$

3-class **Fuzzy partition**

(for Customs & Border Police)

Sweet perception of a fresh tomato: 2 variables, 4 rules (complexity 33.0)

Input1: Total Acidity

Input 2: Sum of Sugars

Rules

Rule **①**

If Total Acidity is rather low And Sum of Sugars is rather low Then Sweet equals 3.39

Rule 2

If Total Acidity is rather low And Sum of Sugars is medium Then Sweet equals 7.19

Rule **3**

If Total Acidity is high And Sum of Sugars is above average Then Sweet equals 3.30

Rule 4

If Total Acidity is high And Sum of Sugars is very high Then Sweet equals 7.49

Data: INRA (Institut National de la Recherche Agronomique) et CTIFL (Centre Technique Interprofessionnel des Fruits et Légumes) – 7th Sensometrics Conf., July 2004, Davis, CA, USA

regression – complex model

Pesticide toxicity on trout: 11 variables, 4 rules (complexity 99.3)

Partitions

Input 1: nCOOR

Rules

Rule **①**

If nCOOR is very low

And LogDpH7 is medium

And ...

then *Toxicity_Trout* equals -1.78

Rule 2

If nCOOR is medium

And LogDpH7 is very high

And ...

then *Toxicity_Trout* equals 5.96

Rule 3

If nCOOR is very low

And LogDpH7 is high

And ...

then Toxicity_Trout equals 6.28

Rule 4

If nCOOR is very high

And LogDpH7 is high

And ...

then *Toxicity_Trout* equals 7.74

classification

xtractis

Breast cancer diagnosis

569 patient images

30 potential predictors

Variable to predict: 357 (62.7%) Malignant diagnosis (1)

212 (37.3%) Benign diagnosis (0)

Data: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian — University of Wisconsin [UCI Machine Learning Repository]

Decision surface

(cross section on variables texture cell 2 & symmetry cell 3)

xtractis[®] model

type 4 Combined model (CB4) – 1,000 models

- 30 variables
- 5,159 rules

CB4 (Absolute majority)

Decision	Classification		Min. Sensitivity	Refused
	error	Correlation	Specificity	
Training (100s x 1,000g x70%)	1.41%	0.970	98.11%	0.00%
Validation (100s x 1,000g x15%)	1.23%	0.974	98.10%	0.47%
Testing (100s x 1,000g x15%)	1.93%	0.959	97.17%	0.00%

Performances

CB4 (Absolute majority)

	Decision	0	1
ted S	0	98.88%	1.89%
dic	1	1.12%	98.11%
Pre	Refused	0.00%	0.00%

(Absolute majority)

CB4

	Decision	0	1
edicted	0	99.16%	1.90%
	1	0.84%	98.10%
Pre	Refused	0.00%	0.47%

CB4

(Absolute majority)

	Decision	0	1
dicted :lass	0	98.60%	2.83%
	1	1.40%	97.17%
Pre	Refused	0.00%	0.09%

Training Confusion matrix

Validation Confusion matrix

Testing Confusion matrix

Specificities of **xtractis**®

Accurate model is **not necessarily** robust

Robust model: difficult to obtain but mandatory

Trivial result:

Accurate model but non-robust

xtractis

٠.,۶

Robustness

Predictions

Training/Validation cross validation (Monte-Carlo)

Specificities of xtractis®

noise detection

Accuracy: r = 0.995, RMSE = 0.12 (3.00%)

Robustness: r = 0.643, RMSE = 0.93 (23.25%)

Accuracy: r = 0.792, RMSE = 0.69 (17.25%)

Robustness: r = 0.706, RMSE = 0.79 (19.75%)

Modeling with noisy data (without and with robustness analysis)

importance of predictors with weak individual influence

Breast Cancer Diagnosis (30 potential predictors)

Top-model: 21 predictors, 3 rules

Actual class

	Decision	0	1
5	0	98.98%	4.78%
class	1	1.02%	95.22
-	Non-mapped	0.41%	2.55%

Robustness 1.000 x MC 15%

Predictors with weak individual influence

Rank	Var. ID	Label	dividual influen	Missing value
1	11	radius Cell 2	1	0,00%
2	22	texture Cell 3	0,436	0,00%
3	8	concave points Cell 1	0,274	0,00%
4	29	symmetry Cell 3	0,147	0,00%
5	23	perimeter Cell 3	0,12	0,00%
6	28	concave points Cell 3	0,105	0,00%
7	21	radius Cell 3	0,103	0,00%
8	15	smoothness Cell 2	0,078	0,00%
9	2	texture Cell 1	0,066	0,00%
10	16	compactness Cell 2	0,063	0,00%
11	1	radius Cell 1	0,052	0,00%
12	25	smoothness Cell 3	0,049	0,00%
13	12	texture Cell 2	0,046	0,00%
14	18	concave points Cell 2	0,045	0,00%
15	10	fractal dimension Cell 1	0,044	0,00%
16	24	area Cell 3	0,039	0,00%
17	3	perimeter Cell 1	0,039	0,00%
18	27	concavity Cell 3	0,033	0,00%
19	4	area Cell 1	0,025	0,00%
20	7	concavity Cell 1	0,022	0,00%
21	30	fractal dimension Cell 3	0,021	0,00%

Best learning strategy applied on the 2 predictors presenting the strongest individual influences (Cartesian approach)

2 predictors, 8 rules

Individual influence

UPD 1501

Rank	Var. ID	Label	Individual influence	Missing value
1	11	radius Cell 2	1,000	0,0 %
2	22	texture Cell 3	0,570	0,0 %

Actual class

	Decision	0	1
Predicted class	0	82.04%	22.46%
	1	17.96%	77.54%
	Non-mapped	0.88%	1.04%

Robustness 1,000 x MC 15%

Data for xtractis®

structured, quantitative/qualitative

Screenshots

Screenshots

